如图(1),在平面直角坐标系xOy中,抛物线与x轴交于,与y轴交于C(0,3),顶点为D(1,4),对称轴为DE. (1)抛物线的解析式是 ;(2)如图(2),点P是AD上的一个动点,是P关于DE的对称点,连结PE,过作F∥PE交x轴于F. 设,求y关于x的函数关系式,并求y的最大值;(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在,请说明理由.
如图,某建筑工程队利用一面墙(墙的长度不限),用40米长的篱笆围成一个长方形的仓库. (1)求长方形的面积是150平方米,求出长方形两邻边的长; (2)能否围成面积220平方米的长方形?请说明理由.
已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根. (1)求实数m的取值范围; (2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.
已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值. (1)方程有两个相等的实数根; (2)方程有两个相反的实数根; (3)方程的一个根为0.
(6分)如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H, (1)求∠ACB的度数; (2)HE=AF.
(6分)已知:如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA,垂足为点D,PE⊥OB,垂足为点E,点M,N分别在线段OD和射线EB上,PM=PN,∠AOB=68°,求∠MPN的度数.