(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
)某企业去年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+)万元(n为正整数). (Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求、的表达式; (Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?
( 12分)四边形ABCD,,,, (1)若,试求与满足的关系式 (2)在满足(1)的同时,若,求与的值以及四边形ABCD的面积
( 12分)已知:,(). (Ⅰ) 求关于的表达式,并求的最小正周期; (Ⅱ) 若时,的最小值为5,求的值.
( 12分)已知等差数列,, (1)求数列的通项公式 (2)设,求数列的前项和
函数,设(其中为的导函数),若曲线在不同两点、处的切线互相平行,且恒成立,求实数的最大值