在极坐标系中,从极点O作直线与另一直线相交于点M,在OM上取一点P,使.(1)求点P的轨迹方程;(2)设R为上任意一点,试求RP的最小值.
已知、分别为椭圆:的上、下焦点,其中也是抛物线: 的焦点,点是与在第二象限的交点,且。(Ⅰ)求椭圆的方程;(Ⅱ)已知点(1,3)和圆:,过点的动直线与圆相交于不同的两点,在线段取一点,满足:,(且)。求证:点总在某定直线上。
已知函数()是定义在上的奇函数,且时,函数取极值1.(Ⅰ)求函数的解析式;(Ⅱ)令,若(),不等式恒成立,求实数的取值范围;
已知数列的前n项和为,,且,数列满足,数列的前n项和为(其中).(Ⅰ)求和;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围
在正三角形中,、、分别是、、边上的点,满足(如图1).将△沿折起到的位置,使二面角成直二面角,连结、(如图2) (Ⅰ)求证:⊥平面;(Ⅱ)求二面角的余弦值.
某市为了推动全民健身运动在全市的广泛开展,该市电视台开办了健身竞技类栏目《健身大闯关》,规定参赛者单人闯关,参赛者之间相互没有影响,通过关卡者即可获奖。现有甲、乙、丙人参加当天的闯关比赛,已知甲获奖的概率为,乙获奖的概率为,丙获奖而甲没有获奖的概率为。(Ⅰ)求三人中恰有一人获奖的概率;(Ⅱ)求三人中至少有两人获奖的概率。