(本小题满分12分)如图,在多面体ABCDEF中,ABCD是正方形,AB=2EF=2,,EF⊥FB,∠BFC=,BF=FC,H为BC的中点.(Ⅰ)求证:平面EDB;(Ⅱ)求证:AC⊥平面EDB; (Ⅲ)求四面体B—DEF的体积.
函数f (x)=(1-x)+(x+3),0<a<1. (1)求函数f (x)的定义域; (2)若函数f (x)的最小值为-2,求a的值.
设函数(a>0且a≠1)是奇函数. (1)求常数k的值; (2)若已知f(1)=,且函数在区间[1,+∞])上的最小值为—2,求实数m的值.
设函数,,为常数; (1)当时, 判断的奇偶性; (2)求证:是上的增函数; (3)在(1)的条件下,若对任意有,求的取值范围.
若二次函数满足,且. (1)求的解析式; (2)若在区间上,不等式恒成立,求实数的取值范围.
设函数的定义域为A,集合. (1)若,求; (2)若集合中恰有一个整数,求实数a的取值范围.