已知的展开式中,只有第六项的二项式系数最大.(Ⅰ)求该展开式中所有有理项的项数;(Ⅱ)求该展开式中系数最大的项.
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P. (1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果) (2)如图2,当α=135°时,求证:BD1= CE1,且BD1⊥CE1; (3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)
如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m。 (1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
阅读下面的材料: 小敏在数学课外小组活动中遇到这样一个问题: 如果,β都为锐角,且,,求的度数. 小敏是这样解决问题的:如图1,把,放在正方形网格中,使得,,且BA,BC在直线BD的两侧,连接AC,可证得△ABC是等腰直角三角形,因此可求得="∠ABC" = °. 请参考小敏思考问题的方法解决问题: 如果,都为锐角,当,时,在图2的正方形网格中,利用已作出的锐角,画出∠MON=,由此可得=______°.
如图,AB为⊙O的直径,M为⊙O外一点,连接MA与⊙O交于点C,连接MB并延长交⊙O于点D,经过点M的直线l与MA所在直线关于直线MD对称.作BE⊥l于点E,连接AD,DE.(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED相等的角,并加以证明.
如图,在平面直角坐标系中,一次函数与反比例函数的图象交于,两点,一次函数的图象与y轴交于点.(1)求一次函数的解析式;(2)点是轴上一点,且的面积是面积的2倍,求点的坐标.