如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m。 (1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
数列中,且满足 ⑴求数列的通项公式; ⑵设,求; ⑶设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。
如图,正四棱柱中,,点在上且. (Ⅰ)证明:平面; (Ⅱ)求二面角的大小.
一个口袋中有大小相同的2个白球和4个黑球,每次从袋中随机地摸出1个球,并换入1只相同大小的黑球,这样继续下去,求: (I)摸2次摸出的都是白球的概率; (II)第3次摸出的是白球的概率。
已知函数. (Ⅰ) 求函数的最小值和最小正周期;(Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
(本题满分14分)已知函数. (1)求函数的定义域; (2)判断的奇偶性; (3)方程是否有根?如果有根,请求出一个长度为的区间,使;如果没有,请说明理由?(注:区间的长度为).