已知函数 f ( x ) = sin 2 ω x + 3 sin ω x sin ω x + π 2 ( ω > 0 )的最小正周期为 π 。 (Ⅰ)求 ω 的值; (Ⅱ)求函数 f ( x ) 在区间 0 , 2 π 3 上的取值范围。
已知 a ≥ b > 0 ,求证: 2 a 3 - b 3 ≥ 2 a b 2 - a 2 b .
在平面直角坐标系 x O y 中,直线 l 的参数方程为 x = t + 1 y = 2 t ,( t 为参数),曲线 C 的参数方程为 x = 2 tan 2 θ y = 2 tan θ ,( θ 为参数),试求直线 l 和曲线 C 的普通方程,并求它们的公共点的坐标.
已知矩阵 A = [ - 1 0 0 2 ] , B = [ 0 2 1 6 ] ,求矩阵 A - 1 B .
A B 、 B C 分别与圆 O 相切于 D 、 C , A C 经过圆心 O ,且 B C = 2 O C ,求证: A C = 2 A D .
设函数 f x = ln x - a x , g x = e x - a x ,其中 a 为实数.
(1)若 f x 在 1 , + ∞ 上是单调减函数,且 g x 在 1 , + ∞ 上有最小值,求 a 的取值范围; (2)若 g x 在 - 1 , + ∞ 上是单调增函数,试求 f x 的零点个数,并证明你的结论.