(本小题满分16分)已知点为椭圆上的任意一点(长轴的端点除外),、分别为左、右焦点,其中a,b为常数.(1)若点P在椭圆的短轴端点位置时,为直角三角形,求椭圆的离心率.(2)求证:直线为椭圆在点P处的切线方程;(3)过椭圆的右准线上任意一点R作椭圆的两条切线,切点分别为S、T.请判断直线ST是否经过定点?若经过定点,求出定点坐标,若不经过定点,请说明理由.
已知都是正数,且成等比数列,求证:
已知曲线C1的极坐标方程为,曲线C2的极坐标方程为,曲线C1,C2相交于A,B两点(I)把曲线C1,C2的极坐标方程转化为直角坐标方程;(II)求弦AB的长度.
圆O是的外接圆,过点C的圆的切线与AB的延长线交于点D,,AB=BC=3,求BD以及AC的长.
已知函数的图像过坐标原点,且在点处的切线的斜率是.(1)求实数的值;(2)求在区间上的最大值;(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.(I)求椭圆方程;(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.