(本小题满分13分)已知函数 (1) 求函数的单调区间和极值;(2) 若函数对任意满足,求证:当,(3) 若,且,求证:
若Sn和Tn分别表示数列{an}和{bn}的前n项和,对任意正整数n,(1)求数列{bn}的通项公式;(2)在平面直角坐标系内,直线ln的斜率为bn,且与抛物线y = x2有且仅有一个交点,与y轴交于点Dn,记,求dn;(3)若的值.
已知函数,且,且的定义域为[0, 1](1)求的表达式(2)判断的单调性并加以证明; (3)求的值域.
已知函数(1)求函数的最小正周期T;(2)在给出的直角坐标系中,画出函数上的图象;(3)若当时,f (x)的反函数为,求的值.
已知以a1为首项的数列{an}满足:an+1=⑴当a1=1,c=1,d=3时,求数列{an}的通项公式⑵当0<a1<1,c=1,d=3时,试用a1表示数列{an}的前100项的和S100⑶求证:当0<a1<(m是正整数),c=,d=3m时, a2-,a3m+2-,a6m+2-,a9m+2-成等比数列。
已知函数(I)求f(x)在[0,1]上的极值;(II)若对任意成立,求实数a的取值范围;(III)若关于x的方程在[0,1]上恰有两个不同的实根,求实数b的取值范围.