某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形? 问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论. 探究一: 用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形? 此时,显然能搭成一种等腰三角形。所以,当时, 用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形? 只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形 所以,当时, 用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形? 若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形 若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形 所以,当时, 用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形? 若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形 若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形 所以,当时, 综上所述,可得表①
探究二: 用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形? (仿照上述探究方法,写出解答过程,并把结果填在表②中) 分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…… 解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形? (设分别等于、、、,其中是整数,把结果填在表③中)
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程) 其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)
如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数; (2)若CD=2,求DF的长.
如图正方形ABCD的边长为4,E、F分别为DC、BC中点. (1)求证:△ADE≌△ABF. (2)求△AEF的面积.
如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.写出图中全等的三角形,并选择其中一对进行证明.
如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.