选修4-4:极坐标与参数方程 已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).(1)写出直线与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值.
..(本题14分)三棱柱中,侧棱与底面垂直,,, 分别是,的中点.(Ⅰ)求证:平面; (Ⅱ)求证:平面;(Ⅲ)求三棱锥的体积.
.(本题12分)为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,,,,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位.(Ⅰ)求;(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工人不在同一组的概率是多少?
(本题12分)在中,(Ⅰ)求AB的值;(Ⅱ)求的值.
(本小题满分14分)已知数列的前项和为,点在直线 上;数列满足,且,它的前9项和为153.(1)求数列、的通项公式;(2)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值;(3)设,是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.
(本小题满分14分)设上的两点,满足,椭圆的离心率短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.