.(本题12分)为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,,,,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位.(Ⅰ)求;(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工人不在同一组的概率是多少?
(本小题12分)已知直线的参数方程是,圆C的极坐标方程为. (1)求圆心C的直角坐标; (2)由直线上的点向圆C引切线,求切线长的最小值.
(本小题10分)已知:方程有两个不相等的负实根;:方程无实根,如果或为真,且为假,求的取值范围。
(本小题满分12分)已知函数,. (Ⅰ)若,求函数的极值; (Ⅱ)设函数,求函数的单调区间; (Ⅲ)若在区间上不存在,使得成立,求实数的取值范围.
在平面直角坐标系xOy中,已知两点和,动点M满足,设点M的轨迹为C,半抛物线:(),设点. (Ⅰ)求C的轨迹方程; (Ⅱ)设点T是曲线上一点,曲线在点T处的切线与曲线C相交于点A和点B,求△ABD的面积的最大值及点T的坐标.
一块长为、宽为的长方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒. (Ⅰ)试把方盒的容积V表示为的函数; (Ⅱ)试求方盒容积V的最大值.