甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球,(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功。某人第一次左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X的分布列和数学期望.
已知二次函数的导函数的图像与直线平行,且在处取得极小值.设. (1)若曲线上的点到点的距离的最小值为,求的值; (2)如何取值时,函数存在零点,并求出零点.
已知函数(为常数)的图像与轴交于点,曲线在点处的切线斜率为. (1)求的值及函数的极值; (2)证明:当时,.
已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且 (1)写出年利润(万元)关于年产品(千件)的函数解析式; (2)年产量为多少千件时,该企业生产此产品所获年利润最大? (注:年利润=年销售收入-年总成本)
在中,的对边分别为且成等差数列. (1)求的值; (2)求的范围.
在中,三个内角,,的对边分别为,,,其中,且 (1)求证:是直角三角形; (2)设圆过三点,点位于劣弧上,,用的三角函数表示三角形的面积,并求面积最大值.