如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴相交于点C;直线l的解析式为y=x+4,与x轴相交于点D;以C为顶点的抛物线经过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.
如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.
如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C与欲到达地点B偏离50米,结果他在水中实际游的路程比河的宽度多10米,求:该河的宽度AB为多少米?
(1)如图中图(1),已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD.请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)(2)如图(2),已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD.BE与CD有什么数量关系?简单说明理由.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图(3),要测量池塘两岸相对的两点B,E间的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.
已知a、b、c满足.(1)求a、b、c的值;(2)试问以a、b、c为边长能否构成三角形?若能构成,求出三角形周长;若不能构成三角形,请说明理由.
阅读材料:小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:设(其中a、b、m、n均为正整数),则有,∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若,用含m、n的式子分别表示a、b,得a=________,b=________;(2)利用所探索的结论,找一组正整数a、b、m、n填空:;(3)若,且a、m、n均为正整数,求a的值.