如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴相交于点C;直线l的解析式为y=x+4,与x轴相交于点D;以C为顶点的抛物线经过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.
班主任让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.小明的设计方案:在一个不透明的盒子中,放入10个球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有 ▲ 个,白球应有 ▲ 个;小兵的设计方案:在一个不透明的盒子中,放入4个黄球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.
如图,已知正方形ABCD的边长是2,点E是AB的中点,延长BC到点F,使CF=AE.现把向左平移,使与重合,得,交于点.证明:AH⊥DE求的长.
随着“微博潮”的流行,初中学生也开始忙着“织围脖”,某校在上微博的280名学生中随机抽取了部分学生调查他们平常每天上微博的时间,绘制了扇形统计图和频数分布直方图(从左向右依次为第一、二、三、四小组),请根据图中信息,回答下列问题:本次调查共抽取了 ▲ 名学生;将频数分布直方图补充完整;被调查的学生中上微博时间中位数落在 ▲ 这一小组内样本中,平均每天上微博的时间为0.5小时这一组的频率是 ▲ ;请估计该校上微博的学生中,大约有 ▲ 名学生平均每天上微博的时间不少于1小时.
先化简后求值:,其中x=.
计算:解不等式组: