观察下表我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n格的“特征多项式”为 ;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,①求x,y的值;②在此条件下,第n格的特征是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.
如图, AB 为 ⊙ O 的直径,点 C 在 ⊙ O 外, ∠ ABC 的平分线与 ⊙ O 交于点 D , ∠ C = 90 ° .
(1) CD 与 ⊙ O 有怎样的位置关系?请说明理由;
(2)若 ∠ CDB = 60 ° , AB = 6 ,求 AD ̂ 的长.
徐州至北京的高铁里程约为 700 km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁 A 与“复兴号”高铁 B 前往北京.已知 A 车的平均速度比 B 车的平均速度慢 80 km / h , A 车的行驶时间比 B 车的行驶时间多 40 % ,两车的行驶时间分别为多少?
如图,在矩形 ABCD 中, AD = 4 ,点 E 在边 AD 上,连接 CE ,以 CE 为边向右上方作正方形 CEFG ,作 FH ⊥ AD ,垂足为 H ,连接 AF .
(1)求证: FH = ED ;
(2)当 AE 为何值时, ΔAEF 的面积最大?
在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:
类别
家庭藏书 m 本
学生人数
A
0 ⩽ m ⩽ 25
20
B
26 ⩽ m ⩽ 100
a
C
101 ⩽ m ⩽ 200
50
D
m ⩾ 201
66
根据以上信息,解答下列问题:
(1)该调查的样本容量为 , a = ;
(2)在扇形统计图中,“ A ”对应扇形的圆心角为 ° ;
(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.
不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.
(1)从中摸出1个球,恰为红球的概率等于 1 3 ;
(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)