(本小题满分13分)已知等比数列中,.若,数列前项的和为.(1)若,求的值;(2)求不等式的解集.
在边长为2的正方体ABCD-A1B1C1D1中,E是BC的中点,F是DD1的中点,求点A到平面A1DE的距离;求证:CF∥平面A1DE,求二面角E-A1D-A的平面角大小的余弦值.
某单位要在甲、乙、丙、丁4人中安排2人分别担任周六、周日的值班任务(每人被安排是等可能的,每天只安排一人).(1)共有多少种安排方法?(2)其中甲、乙两人都被安排的概率是多少?(3)甲、乙两人中至少有一人被安排的概率是多少?
已知函数,①求函数的单调区间;②求函数的极值,③当时,求函数的最大值与最小值.
已知复数,当实数取什么值时,复数是:(1)零;(2)虚数;(3)纯虚数.
已知椭圆:(),直线为圆:的一条切线并且过椭圆的右焦点,记椭圆的离心率为.(1)求椭圆的离心率的取值范围;(2)若直线的倾斜角为,求的大小;(3)是否存在这样的,使得原点关于直线的对称点恰好在椭圆上.若存在,求出的大小;若不存在,请说明理由.