(本小题满分12分)直三棱柱中,,E,F分别是的中点,为棱上的点.(Ⅰ)证明:;(Ⅱ)已知存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为,请说明点D的位置.
(本小题满分13分)在锐角中,三内角所对的边分别为.设,(Ⅰ)若,求的面积;(Ⅱ)求的最大值.
(本小题满分12分)若实数列满足,则称数列为凸数列.(Ⅰ)判断数列是否是凸数列? (Ⅱ)若数列为凸数列, 求证:;设是数列的前项和,求证:.
(本小题满分12分)设A,B是椭圆上的两点,为坐标原点.(Ⅰ)设,, .求证:点M在椭圆上;(Ⅱ)若,求的最小值.
(本小题满分12分)已知斜三棱柱,,,在底面上的射影恰为的中点,为的中点,.(I)求证:平面;(II)求二面角余弦值的大小.
(本小题满分13分)已知函数(Ⅰ)当时,求函数的最大值; (Ⅱ)当时,曲线在点处的切线与有且只有一个公共 点,求的值.