(本小题满分13分)已知函数(Ⅰ)当时,求函数的最大值; (Ⅱ)当时,曲线在点处的切线与有且只有一个公共 点,求的值.
如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
已知向量,若正数k和t使得向量垂直,求k的最小值.
已知点G是△ABC的重心,A(0, -1),B(0, 1),在x轴上有一点M,满足||=||, (∈R). ⑴求点C的轨迹方程; ⑵若斜率为k的直线l与点C的轨迹交于不同两点P,Q,且满足||=||,试求k的取值范围.
在中,O为中线AM上一个动点,若AM=2,则的最小值是_____.
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:(I)AC⊥BC1; (II)求证:AC 1//平面CDB1;