已知二次函数f(x)=ax2+bx+c .(1)设集合A={x|f(x)=x}.①若A={1,2},且f(0)=2,求f(x)的解析式;②若A={1},且a≥1,求f(x)在区间[﹣2,2]上的最大值M(a).(2)设f(x)的图像与x轴有两个不同的交点,a>0, f(c)=0,且当0<x<c时,f(x)>0.用反证法证明:.
如图,在直三棱柱中,,点D是AB的中点, 求证:(1); (2)平面
如图,四边形ABCD为梯形,,求图中阴影部分绕AB旋转一周形成的几何体的表面积和体积.
已知的顶点A(0,1),AB边上的中线CD所在直线方程为,AC边上的高BH所在直线方程为. (1)求的项点B、C的坐标; (2)若圆M经过不同的三点A、B、P(m、0),且斜率为1的直线与圆M相切于点P 求:圆M的方程.
如图,长方体中,,点E是AB的中点. (1)证明:平面; (2)证明:; (3)求二面角的正切值.
已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切 (1)求圆C的方程; (2)过点的直线与圆C交于不同的两点且为时,求:的面积.