(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物次,最后落入袋或袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是(1)分别求出小球落入袋和袋中的概率;(2)在容器的入口处依次放入个小球,记为落入袋中的小球个数,求的分布列和数学期望.
设函数f(x)=,则: (1)证明:f(x)+f(1﹣x)=1; (2)计算:f()+f()+f()+…+f().
(1)计算:+lg25+lg4++; (2)设集合A={x|≤2﹣x≤4},B={x|m﹣1<x<2m+1}.若A∪B=A,求m的取值范围.
设p:实数x满足x2-5ax+4a2<0(其中a>0),q:实数x满足2<x≤5 (1)若a=1,且p∧q为真,求实数x的取值范围; (2)若是的必要不充分条件,求实数a的取值范围.
已知命题成立.命题有实数根.若为假命题,为假命题,求实数的取值范围.
电影院为了解观看此部电影的观众年龄的情况,在某场次的100名观众中随机调查了20名观众,已知抽到的观众年龄可分成5组:,,,,,根据调查结果得出年龄情况残缺的频率分布直方图如下图所示。 (1)根据已知条件,补充画完整频率分布直方图,并估计该电影院观看此部电影的观众年龄的平均数; (2)现在从年龄属于和的两组中随机抽取2人,求他们属于同一年龄组的概率。