将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面的数字是奇数的概率;(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是3的倍数的概率是多少?请用树状图或列表法加以说明.
某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。规定:每位考生先在三个笔试题(题签分别用代码表示)中抽取一个,再在三个上机题(题签分别用代码表示)中抽取一个进行考试。小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签。(1)用树状图或列表法表示出所有可能的结构;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“”的下表为“1”)均为奇数的概率。
如图,已知直线与直线相交于点分别交轴两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.(1)求的面积;(2)求矩形的边与的长;(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t<3)秒,矩形与重叠部分的面积为,求关于的函数关系式.
如图:已知AB是⊙O的直径,P为AB的延长线上一点.且BP=AB,C、D是半圆AB的两个三等分点,连接PD. (1)PD与⊙O有怎样的位置关系?并证明你的结论;(2)连接PC,若AB=10cm,求由PC,弧CD、PD所围成的图形的面积(结果保留π).
先阅读理解下面的例题,再按要求解答后面的问题例题:解一元二次不等式>0.解:令y=,画出y=如图所示,由图像可知:当x<1或x>2时,y>0.所以一元二次不等式>0的解集为x<1或x>2.填空:(1)<0的解集为 ;(2)>0的解集为 ;用类似的方法解一元二次不等式>0.
如图,在矩形ABCD(AB<AD)中,将△ABE沿AE对折,使AB边落在对角线AC上,点B的对应点为F,同时将△CEG沿EG对折,使CE边落在EF所在直线上,点C的对应点为H.(1)证明:AF∥HG(图(1));(2)如果点C的对应点H恰好落在边AD上(图(2)).判断四边形AECH的形状,并说明理由.