某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)
如图,ABCD是围墙,AB∥CD,∠ABC=120°,一根6m长的绳子,一端拴在围墙一角的柱子上(B处),另一端拴着一只羊(E处).(1)请在图中画出羊活动的区域.(2)求出羊活动区域的面积.
已知在平面直角坐标系中的位置如下图所示.(1)分别写出图中点的坐标;(2)画出绕点按逆时针方向旋转后的;(3)求点旋转到点所经过的路线长(结果保留).
(10分).解方程(1)(2)
如图,直角梯形ABCD中,AD∥BC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A—D—C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为ts。(1)设经过t秒,⊙O2与腰CD相切于点F,过点F画EF⊥DC,交AB于E,则EF=。(2)过E画EG∥BC,交DC于G,画GH⊥BC,垂足为H.则∠FEG=。(3)求此时t的值。 (4)在0<t≤3范围内,当t为何值时,⊙O1与⊙O2外切?
如图, 和均为等边三角形,连接BE、CD.(1)请判断:线段BE与CD的大小关系是;(2)观察图,当和分别绕点A旋转时,BE、CD之间的大小关系是否会改变?(3)观察图3和4,若四边形ABCD、DEFG都是正方形,猜想类似的结论是,在图4中证明你的猜想.(4)这些结论可否推广到任意正多边形(不必证明),如图5,BB1与EE1的关系是;它们分别在哪两个全等三角形中;请在图6中标出较小的正六边形AB1C1D1E1F1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?