(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 (请直接写出结果).
如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂吗?
若三角形的三个内角的比是,最短边长为1,最长边长为2.求:(1)这个三角形各内角的度数;(2)另外一条边长的平方.
在△中,,,.若,如图①,根据勾股定理,则.若△不是直角三角形,如图②和图③,请你类比勾股定理,试猜想与的关系,并证明你的结论.
若△三边长满足下列条件,判断△是不是直角三角形,若是,请说明哪个角是直角.(1);(2).
如图,是直线上一点,为任一条射线,平分,平分.(1)指出图中与的补角;(2)试说明与具有怎样的数量关系.