(本小题满分10分)已知数列满足前的和为,数列满足,且前项的和,设.(1)求数列的通项公式;(2)判断数列的单调性.
设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点)。如图,若抛物线C2:与y轴的交点为B,且经过F1,F2两点。1.求抛物线C2的方程;2.设M,N为抛物线C2上的动点,过点N作抛物线C2的切线交椭圆C1于点P、Q两点,求△MPQ面积的最大值。
在直三棱柱ABC—A1B1C1中,AB=AC=AA1=6,BC=4,D是BC的中点,F是C1C上一点,且CF=4。(1)求证:B1F⊥平面ADF;(2)求三棱锥D—AB1F的体积;(3)试在AA1上找一点E,使得BE//平面ADF。
已知双曲线C:的离心率为,左顶点为(-1,0)。(1)求双曲线方程;(2)已知直线x-y+m=0与双曲线C交于不同的两点A、B,且线段AB的中点在圆上,求m的值和线段AB的长。
命题p:实数x满足,其中a<0;命题q:实数x满足或,且是的必要不充分条件,求a的取值范围。
以下茎叶图记录了甲、乙两组四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示。(1)如果X=8,求乙组同学植树棵数的平均数和标准差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率。