设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点)。如图,若抛物线C2:与y轴的交点为B,且经过F1,F2两点。1.求抛物线C2的方程;2.设M,N为抛物线C2上的动点,过点N作抛物线C2的切线交椭圆C1于点P、Q两点,求△MPQ面积的最大值。
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙). (1)求证:平面FHG//平面ABE; (2)记表示三棱锥B-ACE 的体积,求的最大值; (3)当取得最大值时,求二面角D-AB-C的余弦值.
(本小题满分12分)已知函数,其中,相邻两对称轴间的距离不小于 (Ⅰ)求的取值范围; (Ⅱ)在的面积.
(本小题满分12分)已知是三角形三内角,向量,且 (1)求角;(2)若,求。
(本小题满分12分)已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1 (1)求的解析式; (2)求函数的单调递减区间及值域..
(本小题满分12分)在锐角中,角所对边分别为,已知. (Ⅰ)求的值; (Ⅱ)若,求的值.