已知函数f(x)=lnx,g(x)=ax2+bx,a≠0.(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,求证:C1在点M处的切线与C2在点N处的切线不平行.
已知等差数列中,.(1)求数列的通项公式;(2)若数列的前k项和,求k的值.
已知正实数满足:.(1)求的最小值;(2)设函数,对于(1)中求得的,是否存在实数,使得成立,说明理由.
已知直线:(为参数,a为的倾斜角),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线为:. (1)若直线与曲线相切,求的值; (2)设曲线上任意一点的直角坐标为,求的取值范围.
如图,内接于直径为的圆,过点作圆的切线交的延长线于点,的平分线分别交和圆于点,若.(1)求证:;(2)求的值.
已知椭圆,离心率为 ,两焦点分别为、,过的直线交椭圆于两点,且△的周长为.(1)求椭圆的方程;(2)过点作圆的切线交椭圆于两点,求弦长的最大值.