已知正实数满足:.(1)求的最小值;(2)设函数,对于(1)中求得的,是否存在实数,使得成立,说明理由.
设命题:函数的定义域为;命题:不等式对一切均成立。 (Ⅰ)如果是真命题,求实数的取值范围; (Ⅱ)如果命题“或”为真命题,且“且”为假命题,求实数的取值范围.
(本小题满分14分) 已知函数 (Ⅰ)若a=2,求曲线y=f(x)在点x=1处的切线方程; (Ⅱ)求f(x)的单调区间; (Ⅲ)设,若对任意,总存在,使得,求a的取值范围.
(本小题满分13分)两个顶点A、B的坐标分别是,边AC、BC所在直线的斜率之积等于 (1)求顶点C的轨迹方程; (2)求上述轨迹中以为中点的弦所在的直线方程.
(本小题满分12分)已知四棱锥P-ABCD中,底面ABCD为菱形,且平面PAC垂直于底面ABCD,中, (Ⅰ)求证:平面PBD平面PAC (Ⅱ)若BD=PA=2,求四棱锥P-ABCD的体积
(本小题满分12分)已知点列、、,,, (Ⅰ)求证数列为等差数列; (Ⅱ)求数列的通项公式.