在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升自来水放到显微镜下观察,求发现大肠杆菌的概率。
已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=. (1)求角B的大小; (2)若+=3,求sin Asin C的值.
设函数f(x)=x2+|x-2|-1,x∈R. (1)判断函数f(x)的奇偶性; (2)求函数f(x)的最小值.
(满分10分)已知为数列的前项和,(),且. (1)证明数列是等差数列,并求其前项和; (2)设数列满足,求证:.
(满分10分)已知函数 (1)时,解关于的不等式; (2)当时,若对任意的,不等式恒成立,求实数的取值范围;
(满分10分) 在锐角中,,,分别为内角,,所对的边,且满足 (Ⅰ)求角的大小; (Ⅱ)若,且,,求的值.