国家安全机关监听录音机记录了两个间谍的谈话,发现30min长的磁带上,从开始30s处起,有10s长的一段内容包含间谍犯罪的信息,后来发现这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了.那么由于按错了键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大?
已知直线 过点A(1,2),且与两坐标轴的正半轴围成的三角形的面积是4,求直线 的方程。
已知是等差数列,其前n项和为,已知求数列的通项公式
(本小题满分12分)已知函数,其定义域为(),设.(Ⅰ)试确定的取值范围,使得函数在上为单调函数;(Ⅱ)试判断的大小并说明理由;(Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数.
(本小题10分) 已知抛物线在x轴的正半轴上,过M的直线与C相交于A、B两点,O为坐标原点。(I)若m=1,且直线的斜率为1,求以AB为直径的圆的方程;(II)问是否存在定点M,不论直线绕点M如何转动,使得恒为定值。
(本小题9分)如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。(I)求证:PA//平面EFG;(II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。