(本小题9分)如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。(I)求证:PA//平面EFG;(II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。
(本小题满分13分)已知椭圆过点,且离心率. (1)求椭圆的方程; (2)是否存在菱形,同时满足下列三个条件: ①点在直线上; ②点,,在椭圆上; ③直线的斜率等于. 如果存在,求出点坐标;如果不存在,说明理由.
(本小题满分13分)已知函数. (1)求函数的单调区间; (2)若(其中),求的取值范围,并说明.
(本小题满分14分) 如图1,在直角梯形中,,,,四边形是正方形.将正方形沿折起到四边形的位置,使平面平面,为的中点,如图2. (1)求证:; (2)求与平面所成角的正弦值; (3)判断直线与的位置关系,并说明理由.
(本小题满分13分) 某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下: 假设甲、乙两种酸奶独立销售且日销售量相互独立. (1)写出频率分布直方图(甲)中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论) (2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率; (3)设表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求的数学期望.
(本小题满分13分)已知函数. (1)求的最小正周期及其图象的对称轴方程; (2)求的单调递减区间.