函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形(1)求的值及函数的值域;(2)若,且,求的值.
下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔=40;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样?
某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.
(1)求x的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?
椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.(1)求椭圆C的标准方程;(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.
已知圆C:(x-4)2+(y-m)2=16(m∈N*),直线4x-3y-16=0过椭圆E:+=1(a>b>0)的右焦点,且被圆C所截得的弦长为,点A(3,1)在椭圆E上.(1)求m的值及椭圆E的方程;(2)设Q为椭圆E上的一个动点,求·的取值范围.
已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.(1)求动点C的轨迹E的方程;(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.