设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有3个,3号球有6个. (1)从袋中任意摸出2个球,求恰好是一个2号球和一个3号球的概率;(2)从袋中任意摸出2个球,记得到小球的编号数之和为,求随机变量的分布列和数学期望.
已知正项数列满足:, (1)求通项;(2)若数列满足,求数列的前和.
已知数列{}的前n项和 (n为正整数)。(1)令,求证数列{}是等差数列,并求数列{}的通项公式;(2)令,,求并证明:<3.
已知椭圆C:(a>b>0),过点(0,1),且离心率为.(1)求椭圆C的方程;(2)A,B为椭圆C的左右顶点,直线l:x=2与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.
己知a∈R,函数(1)若a=1,求曲线在点(2,f (2))处的切线方程;(2)若|a|>1,求在闭区间[0,|2a|]上的最小值.