街道旁边有一游戏:在铺满边长为9cm的正方形塑料板的宽广地面上,掷一枚半径为1cm的小圆板,规则如下:每掷一次交5角钱,若小圆板压在边上,可重掷一次;若掷在正方形内,需再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获得一元钱,试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?
如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD. (1)证明:BD⊥AA1; (2)证明:平面AB1C//平面DA1C1 (3)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
已知向量,,设函数. (1)求函数的最大值; (2)在锐角三角形中,角、、的对边分别为、、,,且的面积为3,,求的值.
某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图,观察图形的信息,回答下列问题: (Ⅰ)求分数在内的频率,并补全这个频率分布直方图; (Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分; (Ⅲ)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人在分数段的概率.
已知是实数,函数. (Ⅰ)若,求的值及曲线在点处的切线方程; (Ⅱ)求在区间上的最大值.
在数列中,a1=2, b1=4,且成等差数列,成等比数列() (Ⅰ)求a2, a3, a4及b2, b3, b4,由此猜测{an},{bn}的通项公式,并证明你的结论; (Ⅱ)证明:.