已知椭圆,离心率为 ,两焦点分别为、,过的直线交椭圆于两点,且△的周长为.(1)求椭圆的方程;(2)过点作圆的切线交椭圆于两点,求弦长的最大值.
设定义域为的单调函数,对任意,都有,若是方程的一个解,且,则实数=.
(本小题满分14分)已知函数. (1)当时,求函数的单调区间; (2)若对于任意都有成立,求实数的取值范围; (3)若过点可作函数图象的三条不同切线,求实数的取值范围.
(本小题满分14分)设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点). (1)求椭圆的方程; (2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
(本小题满分14分)如图所示,已知正方形的边长为2,.将正方形沿对角线折起,得到三棱锥. (1)求证:平面平面; (2)若三棱锥的体积为,求的长.
(本小题满分14分)各项均为正数的数列,满足,(). (1)求数列的通项公式; (2)求数列的前项和.