在△中,角、、的对边分别为、、,且满足.(Ⅰ)求角的大小;(Ⅱ)若,求面积的最大值.
已知函数,其中为常数. (1)若,求曲线在点处的切线方程; (2)若,求证:有且仅有两个零点; (3)若为整数,且当时,恒成立,求的最大值.
如图,在平面直角坐标系中,椭圆E:的离心率为,直线l:与椭圆E相交于A,B两点,,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N.(1)求a,b的值;(2)求证:直线MN的斜率为定值.
下图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆弧AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作,交AB 于M,交EF于N,交圆弧AB于P,已知(单位:m),记通风窗EFGH的面积为S(单位:)(1)按下列要求建立函数关系式:(i)设,将S表示成的函数;(ii)设,将S表示成的函数;(2)试问通风窗的高度MN为多少时,通风窗EFGH的面积S最大?
如图,在四棱锥P-ABCD中,,,,. (1)求证:平面; (2)若M为线段PA的中点,且过三点的平面与PB交于点N,求PN:PB的值.
在中,角A、B、C的对边分别为.已知.(1)若,求的面积;(2)设向量,,且,求的值.