如图,已知在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由:(2)连接CG,求证:四边形CBEG是正方形.(提示:旋转前后,图形中对应的角和对应的边分别相等)
如图9,在正方形网格中每个小正方形的边长都是单位1,已知△ABC和△A1B1C1关于点O成中心对称,点O直线x上. (1)在图中标出对称中心O的位置; (2)画出△A1B1C1关于直线x对称的△A2B2C2; (3)△ABC与△A2B2C2满足什么几何变换?
(1)3x2-24x+48; (2) 3a+(a+1)(a-4)
[(3ab)2-(1-2ab)(-1-2ab)-1]÷(-ab),其中a=,b=
(1)(-ab)2·(2a2- ab-1); (2)4x(x-y)+(2x-y)(y-2x)
已知:如图,中,,于,平分,且于,与相交于点是边的中点,连结与相交于点. (1)求证:≌; (2)求证:。