已知四棱锥中,底面ABCD为的菱形,平面ABCD,点Q在直线PA上.(Ⅰ)证明:直线QC直线BD;(Ⅱ)若二面角的大小为,点M为BC的中点,求直线QM与AB所成角的余弦值.
(本小题满分14分)已知A(1,1)是椭圆=1()上一点,是椭圆的两焦点,且满足.(1)求椭圆的标准方程;(2)设点是椭圆上两点,直线的倾斜角互补,求直线的斜率.
(本小题满分13分)设函数.(1)若曲线在点处与直线相切,求的值;(2)求函数的单调区间与极值点.
(本小题满分13分)如图,平行四边形中,,,且,正方形所在平面与平面垂直,分别是的中点.(1)求证:;(2)求证:平面;(3)求三棱锥的体积.
在等比数列{}中,,公比,且, 与的等比中项为2.(1)求数列{}的通项公式;(2)设,数列{}的前项和为,当最大时,求的值。
(本小题满分13分)如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,.(1)若,求的值;(2)设函数,求的值域.