已知四棱锥的底面是边长为的正方形,底面,、分别为棱、的中点.(1)求证:平面(2)已知二面角的余弦值为求四棱锥的体积.
设椭圆的两个焦点是,且椭圆上存在点M,使 (1)求实数m的取值范围; (2)若直线与椭圆存在一个公共点E,使得|EF|+|EF|取得最小值,求此最小值及此时椭圆的方程; (3)在条件(2)下的椭圆方程,是否存在斜率为的直线,与椭圆交于不同的两A,B,满足,且使得过点两点的直线NQ满足=0?若存在,求出k的取值范围;若不存在,说明理由
(本小题满分12分) 如图,在四棱锥中,⊥平面,⊥平面,,. (1) 证明:; (2) 点为线段上一点,求直线与平面所成角的取值范围.
.设进入健身中心的每一位健身者选择甲种健身项目的概率是,选择乙种健身项目的概率是,且选择甲种与选择乙种健身项目相互独立,各位健身者之间选择健身项目是相互独立的。 (Ⅰ)求进入该健身中心的1位健身者选择甲、乙两种项目中的一项的概率; (Ⅱ)求进入该健身中心的4位健身者中,至少有2位既未选择甲种又未选择乙种健身项目的概率。
本题满分12) 已知函数,且给定条件, (1)求的最大值及最小值; (2)若又给条件且,p是q的充分条件,求实数m的取值范围。
(本小题满分14分) 已知函数. (1)求函数的单调区间; (2)若函数的图像在点处的切线的倾斜角为,对于任意, 函数在区间上总不是单调函数,求的取值范围; (3)求证: