已知中心在原点,焦点在坐标轴上的椭圆的方程为它的离心率为,一个焦点是,过直线上一点引椭圆的两条切线,切点分别是A、B.(Ⅰ)求椭圆的方程;(Ⅱ)若在椭圆上的点处的切线方程是.求证:直线AB恒过定点,并求出定点的坐标;(Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问否存在实数,使得 成立,若成立求出的值,若不存在,请说明理由
已知曲线按向量平移后得到曲线C. ① 求曲线C的方程; ②过点D(0, 2)的直线与曲线C相交于不同的两点M、N,且M在D、N之间,设,求实数的取值范围.
已知函数是在上每一点均可导的函数,若在时恒成立. (1)求证:函数在上是增函数; (2)求证:当时,有; (3)请将(2)问推广到一般情况,并证明你的结论.
已知函数 ,函数 (1)判断方程的零点个数; (2)解关于的不等式,并用程序框图表示你的求解过程.
先阅读下列不等式的证法,再解决后面的问题:已知,,求证. 证明:构造函数, 因为对一切,恒有≥0,所以≤0,从而得, (1)若,,请写出上述结论的推广式; (2)参考上述解法,对你推广的结论加以证明.
蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以表示第幅图的蜂巢总数. (1)试给出的值,并求的表达式(不要求证明); (2)证明:.