设函数,其图象在点,处的切线的斜率分别为 (I)求证:; (II)若函数的递增区间为,求||的取值范围;(III)若当时(是与无关的常数),恒有,试求的最小值。
已知集合(Ⅰ)若a=1,求;(Ⅱ)若,求a的取值集合.
已知数列满足:(1)求数列的通项公式; (2)证明:;(3)设,且,证明:.
椭圆+=1(a>b>0)的一个顶点为A(0,2),离心率e=.(1)求椭圆的方程;(2)直线l:y=kx-2(k≠0)与椭圆相交于不同的两点M、N,且满足=,·=0,求直线l的方程.
已知函数(1)当时,求上的最大值、最小值:(2)求的单调区间;
如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的余弦值.