已知椭圆 上的点到两焦点的距离和为,短轴长为,直线与椭圆交于两点.(Ⅰ)求椭圆C方程;(Ⅱ)若直线与圆相切,证明: 为定值;(Ⅲ)在(Ⅱ)的条件下,求的取值范围.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围;
定义在R上的奇函数有最小正周期4,且时,。(1)求在上的解析式;(2)判断在上的单调性,并给予证明;(3)当为何值时,关于方程在上有实数解?
我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元;当万元时,万元。 (参考数据:)(1)求的解析式;(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)。
已知函数.(1)若函数的定义域和值域均为,求实数的值;(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围;
已知 (1)若=l,求 ;(2)若,求实数的取值范围.