已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点. (1)求椭圆C的方程; (2)点P(2,3),Q(2,-3)在椭圆上,A、B是椭圆上位于直线PQ两侧的动点, (i)若直线AB的斜率为,求四边形APBQ面积的最大值; (ii)当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
等比数列中,,且 是 和 的等差中项,若 (Ⅰ)求数列 的通项公式; (Ⅱ)若数列 满足 ,求数列的前n项和
已知ABC外接圆O的半径为1,且 ,从圆O内随机取一个点M,若点M取自△ABC内的概率恰为 ,则MBC的形状为
已知函数 (Ⅰ)a=-3时,求不等式 的解集; (Ⅱ)若关于x的不等式 恒成立,求实数a的取值范围
在直角坐标系中,以原点为极点,x轴的正半辐为极轴建立极坐标系,已知曲线,过点P(-2,-4)的直线 的参数方程为:(t为参数),直线与曲线C相交于M,N两点. (Ⅰ)写出曲线C的直角坐标方程和直线的普通方程; (Ⅱ)若成等比数列,求a的值
如图,四边形ABCD是边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点C、F,连接CF并延长交AB于点E. (Ⅰ)求证:E是AB的中点。 (Ⅱ)求线段BF的长.