(本小题满分13分)已知函数在处取得极值.(Ⅰ)求实数的值; (Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;(Ⅲ)证明:对任意的正整数,不等式都成立.
(本小题满分12分)设x=1和x=2是函数f(x)=alnx+bx2+x的两个极值点(1)求a,b的值(2)求f(x)的单调区间。
(本小题满分12分)如图,三棱柱的所有棱长都相等,且底面,为的中点,(Ⅰ)求证:∥(Ⅱ)求证:平面.
(本小题满分10分)设集合 ,(1)求集合;(2)若不等式的解集为,求的值
(本小题满分12分) 下面的一组图形为某一四棱锥S-ABCD的侧面与底面。
(1)请画出四棱锥S-ABCD的示意图,是否存在一条侧棱垂直于底面?如果存在,请给出证明;如果不存在,请说明理由 (2)若SA面ABCD,E为AB中点,求二面角E-SC-D的大小 (3)求点D到面SEC的距离
已知函数的定义域为,且。设点P是函数图像上的任意一点,过点P分别作直线和y轴的垂线,垂足分别为M、N.(1)求的值;(2)问:是否为定值?若是,则求出该定值,若不是则说明理由.(3)设O为坐标原点,求四边形OMPN面积的最小值.