(本小题满分10分)设集合 ,(1)求集合;(2)若不等式的解集为,求的值
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,点E为AB上一点,且,点F为PD中点. (Ⅰ)若,求证:直线AF平面PEC ; (Ⅱ)是否存在一个常数,使得平面PED⊥平面PAB,若存在,求出的值;若不存在,说明理由,
在中,角所对的边分别为,已知, (1)求的大小; (2)若,求的取值范围.
(本小题满分10分)选修4-5:不等式选讲 设函数. (1)解不等式; (2)若对一切实数均成立,求的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线,直线(t为参数). (1)写出曲线C的参数方程,直线的普通方程; (2)过曲线C上任意一点P作与夹角为30°的直线,交于点A,求|PA|的最大值与最小值.
如图,内接于圆,平分交圆于点,过点作圆的切线交直线于点. (1)求证:; (2)求证:.