(本小题满分12分)已知,(其中).(1)求及;(2)试比较与的大小,并用数学归纳法给出证明过程.
已知函数(),其图象在点(1,)处的切线与直线垂直,导函数的最小值为-12. (1)求函数的解析式; (2)求在的值域.
数列满足,,. (1)证明:数列是等差数列; (2)设,求数列的前项和.
在中为内角的对边,且. (1)求的大小; (2)若,试判断的形状.
己知函数. (Ⅰ)求的单调区间; (Ⅱ)若时,恒成立,求的取值范围; (Ⅲ)设函数,若的图象与的图象在区间上有两个交点,求的取值范围.
设函数 (Ⅰ)当,求函数的单调区间与极值; (Ⅱ)若函数在上是增函数,求实数的取值范围.