已知函数 f ( x ) = x 2 + a x + b ( a , b ∈ R ) ,记 M ( a , b ) 是 f ( x ) 在区间 - 1 , 1 上的最大值. (1)证明:当 a ≥ 2 时, M ( a , b ) ≥ 2 ; (2)当 a , b 满足 M ( a , b ) ≤ 2 ,求 a + b 的最大值.
设全集,已知集合,集合,. (Ⅰ)求,; (Ⅱ)记集合,集合,若,求实数的取值范围.
设函数 (Ⅰ) 当时,求函数的极值; (Ⅱ)当时,讨论函数的单调性. (Ⅲ)若对任意及任意,恒有成立,求实数的取值范围.
已知椭圆的两个焦点,,过且与坐标轴不平行的直线与椭圆交于两点,如果的周长等于8。 (1)求椭圆的方程; (2)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及定值;若不存在,说明理由。
如图,在底面为直角梯形的四棱锥中,平面,,,. ⑴求证:; (2)设点在棱上,,若∥平面,求的值.
某电视台举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图: 赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。 1、从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率; 2、电视台决定,复赛票数不低于85票的选手将成为电视台的“签约歌手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成为‘签约歌手’与选择的导师有关?
下面临界值表仅供参考:
参考公式:K2=,其中