已知函数 f ( x ) = x 2 + a x + b ( a , b ∈ R ) ,记 M ( a , b ) 是 f ( x ) 在区间 - 1 , 1 上的最大值. (1)证明:当 a ≥ 2 时, M ( a , b ) ≥ 2 ; (2)当 a , b 满足 M ( a , b ) ≤ 2 ,求 a + b 的最大值.
已知函数=其中且。 (1)求函数的定义域; (2)判断函数的奇偶性,并证明; (3)若,求的取值范围。
已知△ABC三边所在直线方程为AB:,BC:,CA:求AC边上的高所在的直线方程
如图,ABCD是正方形,O是正方形的中心,PO面ABCD,E是PC的中点。 求证:(1)PA∥平面BDE (2)平面PAC平面BDE
已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且 (1)求证:不论λ为何值,总有平面BEF⊥平面ABC; (2)当λ为何值时,平面BEF⊥平面ACD?
如图,在三棱柱中,四边形是菱形,四边形是矩形,,,,. (1)求证:平面平面; (2)求直线与平面所成角的正切值; (3)求点到平面的距离.