已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)当 ,求函数的值域.
如图,四边形ABCD中,为正三角形,,,AC与BD交于O点.将沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为,且P点在平面ABCD内的射影落在内.(Ⅰ)求证:平面PBD;(Ⅱ)若已知二面角的余弦值为,求的大小.
已知函数(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)讨论函数的单调性;
在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛.(Ⅰ)通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;(Ⅱ)记1号、2号射箭运动员射箭的环数为(所有取值为0,1,2,3...,10)的概率分别为、.根据教练员提供的资料,其概率分布如下表:
①1,2号运动员各射箭一次,求两人中至少有一人命中9环的概率;②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.
已知函数,(Ⅰ)求函数的最大值和最小正周期;(Ⅱ)设的内角的对边分别且,,若求的值.
设f(x)=lnx+-1,证明:(1)当x>1时,f(x)< (x-1);(2)当1<x<3时,f(x)<.