选修4-4:坐标系与参数方程 在直角坐标系 x O y 中,直线 C 1 : x = - 2 ,圆 C 2 : ( x - 1 ) 2 + ( y - 2 ) 2 = 1 ,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求 C 1 , C 2 的极坐标方程; (Ⅱ)若直线 C 3 的极坐标方程为 θ = π 4 ( p ∈ R ) ,设 C 2 与 C 3 的交点为 M , N  ,求 △ C 2 M N 的面积.
已知等比数列的公比, 是和的一个等比中项,和的等差中项为,若数列满足().(Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和.
已知向量,.(I)若,求的值;(II)在中,角的对边分别是,且满足,求函数的取值范围
设函数.(I)解不等式; (II)求函数的最小值.
如图,设 P 是抛物线 C 1 : x 2 = y 上动点。圆 C 2 : x 2 + y + 3 2 = 1 的圆心为点 M ,过点 P 做圆 C 2 的两条切线,交直线 l : y = - 3 于 A , B 两点。(Ⅰ)求 C 2 的圆心 M 到抛物线 C 1 准线的距离。 (Ⅱ)是否存在点 P ,使线段 A B 被抛物线 C 1 在点 P 处得切线平分,若存在,求出点 P 的坐标;若不存在,请说明理由.
设函数 f ( x ) = a 2 ln x - x 2 + a x ( a > 0 )
(Ⅰ)求 f ( x ) 单调区间;
(Ⅱ)求所有实数 a ,使 e - 1 ≤ f ( x ) ≤ e 2 对 x ∈ 1 , e 恒成立.注: e 为自然对数的底数