设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (Ⅰ)求应从这三个协会中分别抽取的运动员人数; (Ⅱ)将抽取的6名运动员进行编号,编号分别为 A 1 , A 2 , A 3 , A 4 , A 5 , A 6 ,从这6名运动员中随机抽取2名参加双打比赛.    (i)用所给编号列出所有可能的结果;    (ii)设A为事件"编号为的两名运动员至少有一人被抽到",求事件A发生的概率.
(本小题满分14分)过点(4,1)的直线l与x轴的正半轴,y轴正半轴分别交于A、B两点,当OA+OB最小时,求直线l的方程.
(本小题满分14分)已知不等式同解(即解集相同),求a、b的值.
设,函数,.(Ⅰ)当时,比较与的大小;(Ⅱ)若存在实数,使函数的图象总在函数的图象的上方,求的取值集合.
过轴上动点引抛物线的两条切线、,、为切点,设切线、的斜率分别为和.(Ⅰ)求证:;(Ⅱ)求证:直线恒过定点,并求出此定点坐标;
已知数列满足:,数列满足:,,数列的前项和为.(Ⅰ)求证:数列为等比数列;(Ⅱ)求证:数列为递增数列;(Ⅲ)若当且仅当时,取得最小值,求的取值范围.