已知函数 f x = sin x + cos x 2 + cos 2 x
(Ⅰ)求 f x 最小正周期; (Ⅱ)求 f x 在区间 0 , π 2 上的最大值和最小值.
如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线对折,使得,为的中点. (Ⅰ)求证: (Ⅱ)求三棱锥的体积; (Ⅲ)求二面角的余弦值.
已知点,直线,动点到点的距离等于它到直线的距离. (Ⅰ)求点的轨迹的方程; (Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?
已知函数在点处的切线方程为. (Ⅰ)求的值; (Ⅱ)求的单调区间.
已知函数f(x)的定义域为,且满足f(2)=1,f(xy)=f(x)+f(y), (1)求f(1),f(4), f(8)的值; (2)函数f(x)当时都有.若成立,求的取值范围.
运货卡车以每小时x千米的速度匀速行驶120千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时12元. (1)求这次行车总费用y关于x的表达式; (2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.